Language Model Strategy ======================= The Language Model Strategy represents the most sophisticated normalization approach in SilverSpeak, utilizing pre-trained masked language models to predict contextually optimal character replacements. This strategy leverages the deep linguistic understanding encoded in transformer models to make highly informed decisions about homoglyph normalization based on semantic and syntactic context. Overview -------- This strategy addresses complex normalization scenarios where traditional rule-based or frequency-based approaches may fail. By using masked language models (MLMs) like BERT, RoBERTa, or similar architectures, the strategy can understand nuanced linguistic contexts and select replacements that preserve both meaning and grammatical correctness. The approach is particularly powerful for handling: - Mixed-script texts where context determines the appropriate script - Ambiguous characters that could belong to multiple writing systems - Domain-specific terminology requiring specialized understanding - Complex linguistic constructions where simple character replacement would break meaning **Key Innovations**: - **Context-Aware Masking**: Selectively masks characters/words containing homoglyphs for targeted prediction - **Confidence Scoring**: Uses model confidence to validate replacement quality - **Batch Processing**: Efficiently processes multiple masked positions simultaneously - **Multi-Level Analysis**: Supports both character-level and word-level normalization approaches Implementation Details ----------------------- The language model strategy implementation employs sophisticated techniques to maximize accuracy while maintaining efficiency: 1. **Model Initialization and Validation**: The strategy begins by loading and validating the language model for masked language modeling capability: .. code-block:: python from silverspeak.homoglyphs.normalization import apply_language_model_strategy from transformers import AutoTokenizer, AutoModelForMaskedLM import torch # Load model and tokenizer model_name = "bert-base-multilingual-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForMaskedLM.from_pretrained(model_name) # Verify MLM capability if not hasattr(model, 'get_output_embeddings'): raise ValueError("Model does not support masked language modeling") The strategy automatically detects GPU availability and optimizes device placement for performance. 2. **Homoglyph Detection and Mapping**: The system creates bidirectional mappings to identify potential homoglyphs efficiently: .. code-block:: python # Create reverse mapping for efficient lookup from collections import defaultdict reverse_mapping = defaultdict(list) for orig_char, homoglyphs in mapping.items(): for homoglyph in homoglyphs: reverse_mapping[homoglyph].append(orig_char) # Also add original characters to reverse mapping for orig_char in mapping.keys(): if orig_char not in reverse_mapping: reverse_mapping[orig_char] = [] 3. **Word-Level vs Character-Level Processing**: The strategy supports two processing modes for optimal accuracy: **Word-Level Processing** (Default - Higher Accuracy): .. code-block:: python def find_homoglyph_words(text_segment): """Identify words containing potential homoglyphs.""" words = [] word_pattern = r'\b\w+\b' for match in re.finditer(word_pattern, text_segment): word = match.group() contains_homoglyph = any(char in mapping or char in reverse_mapping for char in word) if contains_homoglyph: words.append((match.start(), match.end(), word)) return words **Character-Level Processing** (Fallback): .. code-block:: python # Process individual character positions positions_to_mask = [ (pos, char) for pos, char in enumerate(segment) if char in mapping or char in reverse_mapping ] 4. **Advanced Masking and Prediction**: The strategy employs sophisticated masking techniques for optimal context preservation: .. code-block:: python # Create masked versions maintaining token alignment mask_token = tokenizer.mask_token mask_token_id = tokenizer.mask_token_id # For word-level: replace entire words with appropriate number of masks chars = list(normalized_segment) mask_length = end_pos - start_pos chars[start_pos:end_pos] = [mask_token] * mask_length masked_segment = "".join(chars) # Tokenize and prepare for model inputs = tokenizer( masked_segments, return_tensors="pt", padding=True, truncation=True, max_length=512 ) 5. **Confidence-Based Selection**: The strategy incorporates confidence thresholding to ensure quality replacements: .. code-block:: python # Extract predictions with confidence scores with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # Apply softmax for probability distribution probs = torch.softmax(logits, dim=-1) top_values, top_indices = torch.topk(probs, k=10) # Filter by confidence threshold candidates = [ (token, confidence) for token, confidence in zip(top_tokens, top_values) if confidence >= min_confidence ] Advanced Usage Examples ----------------------- **Basic Language Model Normalization**: .. code-block:: python from silverspeak.homoglyphs.normalization import apply_language_model_strategy from transformers import AutoTokenizer, AutoModelForMaskedLM # Load model components model_name = "bert-base-multilingual-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForMaskedLM.from_pretrained(model_name) text = "Тhе quісk brоwn fох јumps оvеr thе lаzу dоg." # Mixed Cyrillic homoglyphs normalization_map = { "Т": ["T"], "е": ["e"], "і": ["i"], "с": ["c"], "k": ["k"], "о": ["o"], "w": ["w"], "n": ["n"], "х": ["x"], "ј": ["j"], "m": ["m"], "р": ["p"], "s": ["s"], "v": ["v"], "r": ["r"], "h": ["h"], "l": ["l"], "а": ["a"], "z": ["z"], "у": ["y"], "g": ["g"] } normalized_text = apply_language_model_strategy( text=text, mapping=normalization_map, language_model=model, tokenizer=tokenizer ) print(f"Original: {text}") print(f"Normalized: {normalized_text}") **Alternative Usage via normalize_text**: .. code-block:: python from silverspeak.homoglyphs import normalize_text from silverspeak.homoglyphs.utils import NormalizationStrategies # Automatic model loading (recommended for simplicity) text = "Mathеmatical ехprеssion: ∫f(х)dx = ln|х| + C" normalized_text = normalize_text( text, strategy=NormalizationStrategies.LANGUAGE_MODEL, model_name="distilbert-base-multilingual-cased", # Faster alternative min_confidence=0.5, # Adjust confidence threshold batch_size=4 # Process multiple masks per batch ) print(normalized_text) **Advanced Configuration Options**: .. code-block:: python # Fine-tuned configuration for specific use cases normalized_text = apply_language_model_strategy( text=text, mapping=normalization_map, model_name="microsoft/mdeberta-v3-base", # More advanced model batch_size=8, # Larger batches for efficiency max_length=256, # Shorter sequences for speed min_confidence=0.7, # Higher confidence threshold word_level=True, # Word-level processing (default) device="cuda" # Force GPU usage ) **Domain-Specific Model Usage**: .. code-block:: python # Using domain-specific models for better accuracy domain_models = { "scientific": "allenai/scibert_scivocab_uncased", "clinical": "emilyalsentzer/Bio_ClinicalBERT", "legal": "nlpaueb/legal-bert-base-uncased", "financial": "ProsusAI/finbert" } scientific_text = "Thе protеin structurе shows ехcеllеnt stаbility." result = normalize_text( scientific_text, strategy=NormalizationStrategies.LANGUAGE_MODEL, model_name=domain_models["scientific"] ) **Multilingual Processing**: .. code-block:: python # Optimized for multilingual content multilingual_text = "Hеllo, こんにちは, Hаllо, مرحبا" # Mixed scripts result = apply_language_model_strategy( text=multilingual_text, mapping=normalization_map, model_name="bert-base-multilingual-cased", batch_size=2, min_confidence=0.6 ) Performance Characteristics --------------------------- **Computational Complexity**: - **Time Complexity**: O(n × b × s) where n is text length, b is batch size, and s is sequence length - **Space Complexity**: O(m + v) where m is model size and v is vocabulary size - **GPU Memory**: 1-8GB depending on model size (BERT-base: ~1GB, Large models: 4-8GB) **Processing Speed Benchmarks** (approximate, varies by hardware): .. code-block:: python # Performance comparison across different models model_performance = { "distilbert-base-multilingual-cased": { "speed": "Fast (2-3x faster than BERT)", "accuracy": "Good (90-95% of BERT performance)", "memory": "~512MB GPU" }, "bert-base-multilingual-cased": { "speed": "Medium (baseline)", "accuracy": "Very Good (reference standard)", "memory": "~1GB GPU" }, "microsoft/mdeberta-v3-base": { "speed": "Slow (2-3x slower than BERT)", "accuracy": "Excellent (best performance)", "memory": "~2GB GPU" } } **Optimization Strategies**: .. code-block:: python # Performance optimization techniques optimized_config = { "batch_size": 8, # Process multiple positions simultaneously "max_length": 256, # Reduce sequence length for speed "device": "cuda", # Use GPU acceleration "torch_dtype": torch.float16, # Use half precision for memory efficiency } # Enable mixed precision for faster training with torch.cuda.amp.autocast(): outputs = model(**inputs) Security Considerations ----------------------- **Model Security**: .. code-block:: python def secure_model_loading(model_name, verify_ssl=True, trust_remote_code=False): """Securely load language models with safety checks.""" try: # Verify model source and integrity if not model_name.startswith(("bert-", "distilbert-", "microsoft/")): raise ValueError(f"Untrusted model source: {model_name}") # Load with security constraints model = AutoModelForMaskedLM.from_pretrained( model_name, trust_remote_code=trust_remote_code, use_auth_token=False # Avoid automatic token usage ) return model except Exception as e: logger.error(f"Failed to securely load model: {e}") raise **Resource Management**: .. code-block:: python # Implement resource limits and monitoring def resource_aware_normalization(text, max_memory_gb=4, timeout_seconds=300): """Apply language model strategy with resource constraints.""" import psutil import signal # Check available memory available_memory = psutil.virtual_memory().available / (1024**3) if available_memory < max_memory_gb: raise RuntimeError(f"Insufficient memory: {available_memory:.1f}GB < {max_memory_gb}GB") # Set timeout for processing def timeout_handler(signum, frame): raise TimeoutError("Processing exceeded time limit") signal.signal(signal.SIGALRM, timeout_handler) signal.alarm(timeout_seconds) try: result = apply_language_model_strategy(text, mapping) return result finally: signal.alarm(0) # Disable timeout **Privacy and Data Protection**: .. code-block:: python # Implement data protection measures def privacy_aware_processing(text, mask_sensitive=True): """Process text while protecting sensitive information.""" import re if mask_sensitive: # Mask potential PII before processing patterns = { 'email': r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', 'phone': r'\b\d{3}-\d{3}-\d{4}\b', 'ssn': r'\b\d{3}-\d{2}-\d{4}\b' } masked_text = text for pattern_name, pattern in patterns.items(): masked_text = re.sub(pattern, f'[MASKED_{pattern_name.upper()}]', masked_text) return masked_text return text Best Practices -------------- **Model Selection Guidelines**: .. code-block:: python # Choose models based on requirements def select_optimal_model(requirements): """Select the best model based on specific requirements.""" if requirements.get("speed") == "critical": return "distilbert-base-multilingual-cased" elif requirements.get("accuracy") == "critical": return "microsoft/mdeberta-v3-base" elif requirements.get("multilingual") == True: return "bert-base-multilingual-cased" elif requirements.get("domain") == "scientific": return "allenai/scibert_scivocab_uncased" else: return "bert-base-multilingual-cased" # Default balanced choice **Error Handling and Fallbacks**: .. code-block:: python def robust_language_model_normalization(text, mapping, **kwargs): """Apply language model strategy with comprehensive error handling.""" fallback_strategies = [ ("language_model", apply_language_model_strategy), ("local_context", apply_local_context_strategy), ("dominant_script", apply_dominant_script_strategy) ] for strategy_name, strategy_func in fallback_strategies: try: if strategy_name == "language_model": return strategy_func(text, mapping, **kwargs) else: return strategy_func(text, mapping) except ImportError as e: logger.warning(f"{strategy_name} dependencies not available: {e}") continue except RuntimeError as e: logger.warning(f"{strategy_name} failed: {e}") continue except Exception as e: logger.error(f"Unexpected error in {strategy_name}: {e}") continue # Final fallback: return original text logger.error("All normalization strategies failed") return text **Configuration Management**: .. code-block:: python # Centralized configuration for different use cases LANGUAGE_MODEL_CONFIGS = { "production": { "model_name": "distilbert-base-multilingual-cased", "batch_size": 4, "min_confidence": 0.8, "max_length": 256, "device": "auto" }, "research": { "model_name": "microsoft/mdeberta-v3-base", "batch_size": 1, "min_confidence": 0.5, "max_length": 512, "device": "cuda" }, "development": { "model_name": "bert-base-multilingual-cased", "batch_size": 2, "min_confidence": 0.6, "max_length": 256, "device": "auto" } } Limitations and Advanced Considerations --------------------------------------- **Known Limitations**: - **Computational Requirements**: Requires significant GPU memory and processing power - **Model Bias**: May inherit biases from training data, affecting certain languages or domains - **Context Window**: Limited by model's maximum sequence length (typically 512 tokens) - **Tokenization Artifacts**: Subword tokenization can affect character-level predictions **When to Use This Strategy**: - ✅ Maximum accuracy is required regardless of computational cost - ✅ Context-dependent normalization is critical - ✅ GPU resources are available - ✅ Processing time is not the primary constraint - ✅ Complex, mixed-script texts need normalization **When to Consider Alternatives**: - ❌ Real-time processing is required - ❌ Limited computational resources - ❌ Simple, deterministic normalization is sufficient - ❌ Privacy constraints prevent using pre-trained models **Integration Patterns**: .. code-block:: python # Hybrid approach combining multiple strategies def hybrid_normalization(text, mapping): """Combine language model with faster strategies for optimal results.""" # First pass: fast screening with dominant script quick_result = apply_dominant_script_strategy(text, mapping) # Second pass: language model on remaining ambiguous cases if text != quick_result: # Only apply expensive strategy if changes were made final_result = apply_language_model_strategy(quick_result, mapping) return final_result return quick_result **Evaluation and Quality Metrics**: .. code-block:: python def evaluate_normalization_quality(original, normalized, ground_truth=None): """Evaluate the quality of language model normalization.""" metrics = { "character_changes": sum(c1 != c2 for c1, c2 in zip(original, normalized)), "length_preservation": len(normalized) == len(original), "script_consistency": analyze_script_consistency(normalized) } if ground_truth: metrics["accuracy"] = calculate_accuracy(normalized, ground_truth) return metrics The Language Model Strategy represents the pinnacle of homoglyph normalization accuracy, leveraging cutting-edge NLP technology to achieve context-aware, semantically coherent text normalization. While it demands significant computational resources, its ability to understand complex linguistic patterns makes it invaluable for applications where accuracy is paramount.